
新型模拟前端概述
连续连接模式
连续连接模式是PPG测量的典型模式。它提供最佳的环境光抑制性能和高SNR。该模式在低至5 nA/mA至10 nA/mA的电荷传输比(CTR,光电流与LED电流之比)下能够很好地工作,并提供95 dB至100 dB的DC SNR。这些性能水平可以通过增加抽取系数来提高。该模式使用完整的模拟信号路径,即TIA + BPF + INT + ADC。每次ADC转换时,传入的电荷积分一次。在单个激励事件(如PPG)中,当对来自传感器响应的电荷进行积分时,积分器的大部分动态范围会被使用。在预调理周期之后,TIA连续连接到输入,故输入信号未被调制。为了降低噪声,光电二极管的阳极被预调理到TIA的基准电压(TIA_VREF)。通常将TIA_VREF设置为1.27 V,以获得TIA的最大动态范围。光电二极管的阴极连接到阴极电压源(VCx)引脚,通常将该器件设置为向光电二极管阴极提供TIA_VREF + 215 mV的电压,以在光电二极管上产生215 mV的反向偏置。这会减少信号路径噪声和光电二极管电容。在这种模式下,典型LED脉冲宽度为2μs。短LED脉冲可提供最佳环境光抑制性能。使用多个LED脉冲时,脉冲数每增加一倍,SNR便提高3 dB。由于斩波能消除积分器的低频噪声成分,因此通常使能积分器斩波以获得最高SNR。选择的TIA增益越高,折合到输入端的噪声越低,但TIA的动态范围会减小。TIA的动态范围计算如下:动态范围 = (TIA_VREF)/(TIA增益)。为了提高ADC饱和电平,可以减小TIA增益,或者增加积分器电阻。选择较高的积分器电阻可降低噪声,但选择较低的积分器电阻会增加环境光裕量。
多次积分模式
浮空模式
弱光条件下的浮空模式与多次积分模式选择
数字积分模式
数字积分模式的优劣
PPG应用
鉴于COVID-19大流行,PPG应用在生命体征监测和健康诊断中变得更加重要。此外,多指标对于检测至关重要。例如,一些重要的生命体征测量包括心率监测(HRM)、HRV和血氧饱和度(SpO2,可通过脉搏血氧仪和血压进行测量)。
光学和无创SpO2监测(也称为脉搏血氧测定)在COVID-19患者的缺氧检测中已变得非常有价值。缺氧指身体组织缺乏氧供应,是COVID-19的主要症状之一。缺氧也可能引起心律加快。因此,光学和无创心率监测对于检测也很关键。
对于将来的可穿戴设备,多种测量功能的集成是最佳的(虽然不一定有必要),ADPD4100/ADPD4101对此极为有利。该AFE可测量任何类型的传感器输入(包括温度、ECG和呼吸测量)。因此,仅使用一个传感器AFE就能建立完整的多参数VSM平台。
脉搏血氧测定—SpO2测量
脉搏血氧测定使用红光(通常为660 nm波长)和红外(IR) LED(通常为940 nm波长)。脱氧血红蛋白主要吸收660 nm波长的光,而氧合血红蛋白主要吸收940 nm波长的光。光电二极管感知未被吸收的光,然后将感知到的信号分为直流分量和交流分量。直流分量代表组织、静脉血和非搏动性动脉血引起的光吸收。交流分量代表搏动性动脉血。然后按照下式计算SpO2的百分比:
%SpO2 = (ACred/DCred)/(ACIR/DCIR)
可将ADPD4100/ADPD4101的任意两个时隙配置为测量对红光和IR LED的响应,从而测量SpO2。其余时隙可以配置为测量来自不同波长LED的PPG,并且还可以支持ECG测量、导联脱落检测、呼吸测量及其他传感器测量。
心率监测
ECG测量
ECG测量已纳入可穿戴设备中,例如用于抽检的手表和用于连续监测的胸贴。此类设备通常使用由金属和其他导电材料制成的电极,这些电极属于极化电极,被称为干电极。使用干电极进行ECG测量的主要挑战是电极-皮肤接触阻抗很高且过电势相对较高。
基于常规仪表放大器的ECG解决方案使用缓冲器来减轻与信号衰减相关的高电极-皮肤接触阻抗影响。右腿驱动(RLD)技术需要第三电极并将基准电压驱动回人体,在测量电压的ECG系统中,该技术的作用是抑制人体、电极和电缆所暴露所致的共模电压。
当应用于ECG测量时,ADPD4100/ADPD4101采用一种新颖的方法,即使用无源电阻电容(RC)电路来跟踪一对电极上的差分电压。无源RC电路可以简单到只有三个元件,即两个电阻RS和一个电容CS,如图3a所示。对ECG数据的每次采样过程分为两步。
在充电步骤中,两个输入引脚(IN7和IN8)浮空。如果充电时间>3τ,则电容CS上的电荷与两个电极上的差分电压成正比,其中τ为RS和CS定义的时间常数,τ=2RSCS。在电荷转移步骤中,电容连接到TIA,电荷转移到AFE进行测量。这种基于电荷测量的ECG解决方案具有多个优势,包括:无需缓冲器和RLD的第三电极,系统尺寸因外部元件减少而缩小,以及节省功耗。
基于阻抗的呼吸测量
使用ADPD4100/ADPD4101进行呼吸测量时,检测的是吸气和呼气周期中肺的生物阻抗变化。在重症监护病房(ICU)中,以及在睡眠期间,对患者进行呼吸测量有利于患者管理,而且能及时报警以挽救生命。这对有呼吸系统疾病和睡眠呼吸中止症的患者至关重要。仅仅睡眠呼吸中止症就是一个严重的公共健康和安全威胁,在美国有超过2500万成年人罹患此症。
当患者呼吸时,肺的容积会膨胀和收缩,导致胸部阻抗发生变化。通过将电流注入胸部路径并测量压降,可以测量该阻抗变化。图5a显示了一个参考设计,采用两个电极进行ECG测量和呼吸监测。图5b显示了同步记录的ECG、呼吸相关阻抗波和PPG。ECG和呼吸利用左右手腕上的不锈钢干电极测量,PPG利用绿光LED测量。